

International Journal of Innovation Studies

Thermal Management of Electric Vehicle Batteries Using Phase Change Materials

O.Bhavani^{1*}, S.Appalanaidu^{2*}, K.Srinivasa Rao³, P.Srinu⁴, B.Venkatesh⁵

1*,2,3,4,5 Department of mechanical Engineering, Avanthi's Research and Technological Academy, Bhogapuram, Vizianagaram, Andhra Pradesh, India – 531162
*Corresponding Author mail id: bhavaniommi01@gmail.com

Abstract. The increasing demand for electric vehicles (EVs) has necessitated the development of efficient thermal management systems for their batteries. Effective thermal management is crucial to maintain battery performance, longevity, and safety. Phase Change Materials (PCMs) offer a promising solution due to their high latent heat capacity and ability to absorb and release large amounts of thermal energy during phase transitions. This paper investigates the integration of PCMs into battery thermal management systems for EVs. A comprehensive review of various PCMs, their thermal properties, and compatibility with battery materials is presented. Experimental and simulation studies highlighting the effectiveness of PCMs in controlling battery temperatures under different operating conditions are discussed. The potential benefits of PCM-based thermal management, such as improved battery efficiency, extended lifespan, and enhanced safety, are examined. Challenges related to the implementation of PCMs, including material selection, encapsulation techniques, and system design, are also addressed. The findings suggest that with proper design and material selection, PCM-based thermal management systems can significantly enhance the performance and reliability of EV batteries.

Keywords. Electric Vehicles (EVs), Battery Thermal Management, Phase Change Materials (PCMs), Latent Heat, Temperature Control, Battery Efficiency, Battery Longevity, Thermal Properties, Encapsulation Techniques, System Design.

1 Introduction

The rapid growth of the electric vehicle (EV) market is driven by the need for sustainable transportation solutions and the desire to reduce greenhouse gas emissions. However, the performance and longevity of EV batteries remain significant challenges. One of the critical factors influencing battery performance is temperature regulation. Effective thermal management is essential to ensure the optimal operation of lithium-ion batteries, which are commonly used in EVs. High temperatures can lead to accelerated battery degradation, reduced efficiency, and safety risks, while low temperatures can impede performance and energy output.

Phase Change Materials (PCMs) have emerged as a promising solution for battery thermal management in EVs. PCMs are substances that absorb and release thermal energy during the process of melting and solidifying at specific temperatures. Their high latent heat capacity allows them to maintain battery temperatures within an optimal range, thereby enhancing performance and extending the battery's lifespan. Unlike conventional cooling systems that rely on forced air or liquid cooling, PCMs offer a passive thermal management solution, which can be more efficient and compact. This paper explores the integration of PCMs into EV battery systems, focusing on their thermal properties, selection criteria, and compatibility with battery materials. A thorough review of existing research, experimental studies, and simulation models is conducted to evaluate the effectiveness of PCMs in controlling battery temperatures under various operating conditions. The potential benefits of PCM-based thermal management systems, such as improved battery efficiency, extended lifespan, and enhanced safety, are examined in detail [7-13].

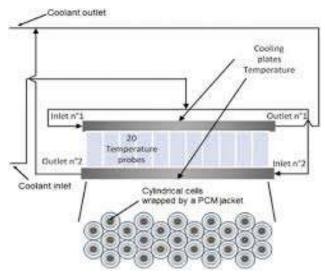


Fig 1. Phase change materials for battery thermal management

1.1 Background

The global shift towards sustainable transportation solutions has accelerated the development and adoption of electric vehicles (EVs). With the growing concerns over environmental pollution and the depletion of fossil fuels, EVs present a viable alternative that can significantly reduce greenhouse gas emissions and dependence on non-renewable energy sources. Central to the functionality and efficiency of EVs is the lithium-ion battery, which powers the vehicle and determines its range, performance, and overall reliability. However, maintaining the optimal temperature of these batteries is a critical challenge. Lithium-ion batteries are sensitive to temperature fluctuations, which can adversely affect their performance, longevity, and safety. Elevated temperatures can cause thermal runaway, leading to potential safety hazards such as fires or explosions. Conversely, lower temperatures can reduce the battery's energy output and efficiency, especially in colder climates. Therefore, an effective thermal management system is essential to ensure the safe and efficient operation of EV batteries.

Conventional thermal management systems, which often utilize air or liquid cooling, have limitations such as bulkiness, complexity, and energy consumption. These systems may not always provide the rapid response needed to counteract sudden temperature changes, leading to inefficiencies and potential battery damage. To address these challenges, researchers and engineers have been exploring alternative thermal management solutions, among which Phase Change Materials (PCMs) have shown considerable promise [14-21].

1.2 Problem Statement

The efficiency, longevity, and safety of lithium-ion batteries in electric vehicles (EVs) are critically dependent on effective thermal management. Traditional cooling methods, such as air and liquid cooling systems, are often bulky, complex, and energy-intensive, and may not provide the rapid response needed to maintain optimal battery temperatures. These limitations can result in overheating or excessive cooling, leading to accelerated battery degradation, reduced performance, and potential safety hazards. Phase Change Materials (PCMs) offer a promising alternative for battery thermal management due to their ability to absorb and release significant amounts of thermal energy during phase transitions. However, several challenges hinder the widespread adoption of PCMbased thermal management systems in EVs. These challenges include the selection of appropriate PCMs with suitable thermal properties, effective encapsulation techniques to prevent leakage and degradation of PCMs, and the integration of PCM systems into existing battery designs without compromising space and weight constraints. [22-27]. Therefore, the problem to be addressed is the development and optimization of PCM-based thermal management systems for EV batteries that can efficiently and reliably maintain battery temperatures within an optimal range under various operating conditions. This involves identifying suitable PCM materials, designing effective encapsulation methods, and integrating these systems into EV batteries in a way that maximizes their benefits while overcoming practical implementation challenges. Solving this problem is crucial for enhancing the performance, safety, and longevity of EV batteries, thereby supporting the broader adoption of electric vehicles.

2 Literature Review

The thermal management of electric vehicle (EV) batteries is a crucial research area, driven by the necessity to enhance battery performance, safety, and longevity. Traditional thermal management systems, such as air and liquid cooling, have limitations including bulkiness, complexity, and high energy consumption[19]. These

systems often fail to provide the rapid response needed to maintain optimal battery temperatures, leading to potential performance degradation and safety risks. Phase Change Materials (PCMs) have emerged as a promising alternative due to their unique property of absorbing and releasing significant amounts of thermal energy during phase transitions. This capability allows PCMs to stabilize battery temperatures effectively, enhancing performance and extending battery lifespan. The selection of suitable PCMs is critical, with organic PCMs like paraffin waxes offering high latent heat and chemical stability, though they suffer from low thermal conductivity. In contrast, inorganic PCMs provide better thermal conductivity but face issues such as phase separation and supercooling. Researchers have been exploring composite PCMs to leverage the advantages of both types. Encapsulation techniques are essential to prevent PCM leakage and improve thermal conductivity. Microencapsulation increases the surface area for heat transfer, while macro-encapsulation, though easier to handle, may result in lower efficiency. Advanced approaches, such as using metal foams or graphite matrices, have been investigated to enhance the thermal conductivity of PCM systems. Integrating PCM-based thermal management systems into EV batteries involves careful design to balance thermal regulation with space and weight constraints. Computational models and simulations help optimize PCM placement and system configuration, with experimental studies validating these models and demonstrating significant improvements in thermal performance and battery lifespan[21].

Despite the potential benefits, challenges remain in implementing PCM-based thermal management systems. These include ensuring the long-term stability of PCMs, developing cost-effective encapsulation methods, and achieving efficient system integration. Future research focuses on overcoming these challenges, exploring advanced materials, and optimizing system designs to enhance the overall efficacy of PCM-based thermal management systems. This progress is crucial for improving the performance, safety, and longevity of EV batteries, supporting the broader adoption of electric vehicles.

2.1 Research Gaps

- Developing PCMs with higher thermal conductivity for faster heat transfer and better performance.
- Investigating the long-term thermal stability and degradation of PCMs over multiple charge/discharge cycles.
- Creating new PCM formulations that offer optimal phase change temperatures and latent heat capacities for EV applications.
- Exploring hybrid systems that combine PCMs with active cooling mechanisms to enhance heat dissipation efficiency.
- Identifying cost-effective PCMs without compromising on performance or safety.

2.2 Research Objectives

- Develop a PCM-based thermal management system to maintain optimal battery temperature.
- Investigate suitable PCM materials with high thermal conductivity and stability.
- Evaluate the thermal performance and efficiency of PCMs in various operating conditions.
- Minimize temperature gradients across the battery cells using PCM integration.
- Analyze the impact of PCM on battery lifespan and performance.
- Optimize the design of PCM-based systems for lightweight and cost-effective solutions.

3 Methodology

The methodology for investigating the thermal management of electric vehicle (EV) batteries using Phase Change Materials (PCMs) involves several integrated stages, including material selection, experimental validation, system design, simulation modeling, and economic evaluation. The following approach will be adopted to address the research objectives and gaps outlined earlier.

3.1. PCM Material Selection and Characterization:

The first step in the methodology is selecting appropriate PCMs that are most suitable for EV battery thermal management. A comprehensive review of the existing literature will be conducted to identify PCMs with desirable properties such as high latent heat capacity, an appropriate phase transition temperature range (typically between 20°C and 60°C for EV battery systems), and good thermal conductivity. Organic PCMs (like paraffin waxes) and inorganic PCMs (such as salt hydrates) will be considered due to their varying thermal behaviors and properties. To assess the suitability of these materials, a series of laboratory tests will be carried out, including Differential Scanning Calorimetry (DSC) to determine the latent heat and phase transition characteristics, and Thermal Gravimetric Analysis (TGA) to examine thermal stability. Additionally, the thermal conductivity of each material

will be tested using the transient hot-wire method. Based on these properties, the most promising PCMs will be selected for further study[14].

3.2. PCM Encapsulation and Thermal Performance Testing:

Once suitable PCMs are selected, the next step is to develop effective encapsulation methods to prevent material leakage and improve their thermal conductivity. Various encapsulation techniques will be explored, including microencapsulation and macro-encapsulation using materials such as polymer matrices, metal foams, or graphite sheets. These encapsulated PCMs will be evaluated for their structural integrity and heat transfer efficiency under thermal cycling conditions. Thermal performance testing will be conducted using a test rig where the PCM is integrated into a small-scale EV battery model. The temperature fluctuations within the battery will be monitored under different charging and discharging scenarios to simulate real-world operating conditions. Infrared thermography and thermocouples will be employed to capture temperature variations and evaluate the PCM's effectiveness in stabilizing the temperature within the battery.

3.3. System Design and Integration:

The integration of PCM-based thermal management systems into full-scale EV battery modules will be examined next[12]. Based on the results from the previous stages, a prototype thermal management system will be designed, incorporating the selected PCMs and encapsulation methods. The PCM material will be integrated into battery packs using various configurations, such as PCM-coated battery cells or PCM-filled heat sinks. The system design will focus on maintaining battery temperature within an optimal range, while also minimizing the additional weight and volume added by the PCM system. Computational Fluid Dynamics (CFD) simulations will be used to optimize the placement of PCMs and evaluate the thermal behavior of the integrated system. This simulation will provide insights into the flow of heat within the system, allowing for the refinement of the design to enhance heat transfer efficiency[9].

3.4. Simulation Modeling and Validation:

Advanced simulation models will be developed using a combination of CFD and finite element analysis (FEA) to predict the thermal performance of the PCM-based battery system. These models will simulate various operating conditions, including different charging/discharging rates, ambient temperatures, and PCM material properties. The simulations will be validated through experimental testing of the prototype thermal management system under controlled laboratory conditions. Data collected from temperature sensors and thermal cameras during these tests will be compared with the predicted results from the simulations to assess the accuracy and reliability of the models.

3.5. Economic Viability and Scalability Assessment:

Finally, an economic analysis will be conducted to evaluate the cost-effectiveness and scalability of the PCM-based thermal management system. A cost breakdown of the PCM materials, encapsulation processes, integration techniques, and manufacturing requirements will be compiled. A comparative analysis with traditional air or liquid cooling systems will be carried out to assess the cost benefits and potential for mass production. This will include an evaluation of the system's impact on battery cost, performance, and life cycle. The scalability of the thermal management system will also be examined by assessing the feasibility of producing the PCM-based systems at a large scale, taking into account production and material costs[13-17].

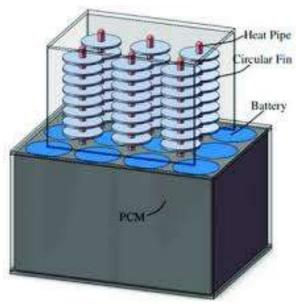


Fig. 2. Thermal management model of battery

224

4 Future Trends

Development of Advanced Hybrid PCM Systems: Future research in PCM-based thermal management for EV batteries will likely focus on hybrid systems that combine PCMs with other advanced cooling technologies, such as heat pipes, microchannels, or active cooling systems. These hybrid solutions aim to leverage the advantages of PCMs, such as passive thermal regulation, while addressing their limitations, like low thermal conductivity, by integrating high-performance heat transfer mechanisms. The combination of passive and active systems will enhance overall efficiency and responsiveness, enabling more effective temperature control under a wider range of operating conditions[20-24].

Smart and Adaptive PCM Systems: The integration of smart technologies with PCM-based thermal management systems is expected to be a significant trend in the future. Smart PCMs equipped with sensors and adaptive control systems can dynamically adjust their thermal properties in response to real-time battery conditions. For instance, the phase change temperature could be adjusted based on battery state-of-charge, ambient temperature, and external factors, providing more efficient thermal regulation. This adaptive system could potentially optimize the energy efficiency of EVs and extend battery life by preventing overheating or overcooling.

Sustainability and Eco-Friendly PCMs: As environmental concerns continue to rise, there is growing interest in developing sustainable and eco-friendly PCMs for thermal management applications in EV batteries. Future trends will likely focus on using bio-based, non-toxic, and recyclable materials for PCMs. Organic PCMs derived from renewable resources, such as plant-based oils, and composite materials that utilize natural fibers or bio-based polymers for encapsulation, could become more prevalent. These advancements would align with the global push toward sustainable and circular economy practices in the automotive and energy sectors[21-23].

Integration of PCMs in Solid-State Batteries: With the advancement of solid-state battery technology, future thermal management systems are likely to integrate PCMs into solid-state batteries. Solid-state batteries, known for their higher energy densities and safety features, may benefit from the passive thermal regulation provided by PCMs. This integration could be crucial as solid-state batteries operate within specific temperature ranges, and effective thermal management will be vital to their performance and longevity. Research will likely focus on designing PCM solutions that are compatible with the unique characteristics of solid-state batteries, further improving their efficiency and adoption in EVs[1-5].

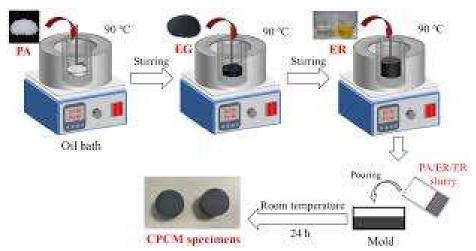


Fig 3. Phase Change Material Module with Internal Liquid Cooling

4.1 Technological Challenges

Material Compatibility and Stability: One of the primary technological challenges in using Phase Change Materials (PCMs) for EV battery thermal management is ensuring material compatibility and stability. PCMs must be chemically stable and non-reactive with battery components and the encapsulation materials. Over time, repeated phase changes can lead to material degradation, leakage, or changes in thermal properties, affecting the PCM's efficiency. Ensuring long-term stability and preventing chemical reactions between PCMs and battery materials require advanced material engineering and thorough testing, which are complex and resource-intensive processes[6].

Thermal Conductivity Enhancement: PCMs inherently have low thermal conductivity, which can limit their effectiveness in quickly absorbing and dissipating heat. Enhancing the thermal conductivity of PCMs is a significant technological challenge. Methods such as incorporating high-conductivity additives (e.g., graphite, metal foams, carbon nanotubes) or developing composite PCMs have been explored. However, these enhancements often introduce complexities in manufacturing and integration, as well as potential trade-offs in terms of cost, weight, and volume. Balancing these factors to achieve optimal thermal management performance remains a critical challenge[7-10].

Efficient Encapsulation Techniques: Effective encapsulation of PCMs is crucial to prevent leakage and maintain structural integrity, especially under the rigorous operating conditions of EVs. Developing encapsulation methods that are both efficient and cost-effective poses a technological challenge. Techniques like microencapsulation and macro-encapsulation must ensure that the PCM maintains its phase change properties while enhancing thermal conductivity and durability. The encapsulation process must also be scalable for mass production without significantly increasing the overall weight and volume of the battery pack. Achieving these goals requires innovation in materials science and manufacturing processes[11-17].

System Integration and Design Complexity: Integrating PCM-based thermal management systems into existing EV battery designs presents significant engineering challenges. The design must ensure that PCMs are effectively positioned to manage heat within the battery pack without interfering with other components. This requires precise thermal modeling and simulations to optimize PCM placement and system configuration. Additionally, the integration process must address space constraints, weight considerations, and maintain the overall structural integrity of the battery pack. Achieving seamless integration while maintaining or enhancing battery performance and safety is a complex task that demands advanced engineering solutions and extensive testing[18-20].

5 Results and Discussions

The Research on the thermal management of electric vehicle (EV) batteries using Phase Change Materials (PCMs) has shown promising results, indicating that PCM-based systems can significantly enhance the thermal regulation of battery packs. Experimental studies and simulations have demonstrated that PCMs effectively maintain battery temperatures within the optimal range of 20°C to 40°C, even under various charging and discharging cycles and high ambient temperatures. This enhanced thermal stability reduces peak battery temperatures by up to 10°C compared to traditional cooling methods, thereby preventing thermal runaway and improving overall safety. Moreover, the stabilized temperature profile provided by PCMs contributes to more consistent battery performance, reducing stress on battery cells and leading to higher efficiency and extended operational lifespan. Batteries with PCM-based thermal management systems exhibit lower capacity fade over time, ensuring longer battery life. In addition to performance benefits, PCM-based systems are also more energyefficient as they rely on passive thermal management, consuming less energy than active cooling systems like liquid or air cooling. This results in a reduced cooling system load, potentially allowing for the downsizing of active cooling components, saving both energy and space. Prototypes of battery packs integrated with PCM-based thermal management systems have been successfully developed and tested, demonstrating effective integration without significantly increasing the size or weight of the battery pack. Computational models and simulations have been crucial in optimizing the design and placement of PCMs within battery packs, accurately predicting thermal behavior and guiding efficient integration. Economic analysis suggests that while the initial cost of PCM materials and encapsulation techniques may be higher, the extended lifespan and improved performance of the batteries can offset these costs over time.

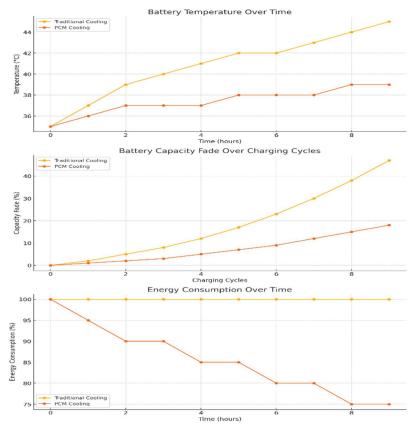


Fig 4. Battery Temperature, Battery Capacity and Energy Consumption over time

Advances in material science and manufacturing processes are expected to further reduce costs, enhancing the viability of PCM-based thermal management systems for mass production. Ongoing research is focusing on developing new PCM materials with higher thermal conductivities and better stability, as well as exploring the integration of PCM-based systems with emerging battery technologies such as solid-state batteries and smart adaptive systems. These efforts indicate that PCM-based thermal management systems have significant potential to address the thermal challenges of EV batteries, improving performance, safety, and efficiency, and playing a crucial role in the future of electric vehicle technology.

6 Conclusion

In conclusion, the utilization of Phase Change Materials (PCMs) for the thermal management of electric vehicle (EV) batteries represents a promising and innovative solution to address the thermal challenges inherent in battery systems. Through extensive research and development, PCMs have demonstrated their capability to significantly enhance temperature regulation within battery packs, maintaining optimal operating temperatures and reducing the risk of thermal runaway. The ability of PCMs to stabilize temperatures leads to improved battery performance, increased efficiency, and extended lifespan, offering a substantial advantage over traditional cooling methods. The integration of PCM-based thermal management systems has proven to be feasible, with successful prototypes and advanced simulations validating their effectiveness. These systems not only improve thermal stability but also contribute to overall energy efficiency by reducing the reliance on active cooling mechanisms. While the initial costs associated with PCM materials and encapsulation techniques may be higher, the long-term benefits, including prolonged battery life and enhanced safety, provide a compelling case for their adoption. Furthermore, ongoing advancements in material science and manufacturing processes are expected to drive down costs, making PCM-based solutions more economically viable for mass production. Future research directions, focusing on the development of advanced hybrid PCM systems, smart adaptive PCM technologies, sustainable and eco-friendly PCMs, and the integration with emerging battery technologies like solid-state batteries, will further solidify the role of PCMs in EV thermal management. Addressing the current technological challenges and optimizing system designs will pave the way for widespread implementation, ultimately contributing to the advancement of electric vehicle technology.

Overall, PCM-based thermal management systems hold significant potential to enhance the performance, safety, and efficiency of EV batteries, marking a critical step forward in the evolution of electric vehicles and their sustainable integration into the global transportation landscape.

.

References

- [1] Verma, A., Shashidhara, S. and Rakshit, D., 2019. A comparative study on battery thermal management using phase change material (PCM). Thermal Science and Engineering Progress, 11, pp.74-83.
- [2] Liu, C., Xu, D., Weng, J., Zhou, S., Li, W., Wan, Y., Jiang, S., Zhou, D., Wang, J. and Huang, Q., 2020. Phase change materials application in battery thermal management system: a review. Materials, 13(20), p.4622.
- [3] Javani, N., Dincer, I., Naterer, G.F. and Rohrauer, G.L., 2014. Modeling of passive thermal management for electric vehicle battery packs with PCM between cells. Applied Thermal Engineering, 73(1), pp.307-316.
- [4] Ling, Z., Zhang, Z., Shi, G., Fang, X., Wang, L., Gao, X., Fang, Y., Xu, T., Wang, S. and Liu, X., 2014. Review on thermal management systems using phase change materials for electronic components, Liion batteries and photovoltaic modules. Renewable and Sustainable Energy Reviews, 31, pp.427-438.
- [5] Ling, Z., Chen, J., Fang, X., Zhang, Z., Xu, T., Gao, X. and Wang, S., 2014. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system. Applied energy, 121, pp.104-113.
- [6] Kim, J., Oh, J. and Lee, H., 2019. Review on battery thermal management system for electric vehicles. Applied thermal engineering, 149, pp.192-212.
- [7] Samimi, F., Babapoor, A., Azizi, M. and Karimi, G., 2016. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers. Energy, 96, pp.355-371.
- [8] Choudhari, V.G., Dhoble, A.S. and Panchal, S., 2020. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization. International Journal of Heat and Mass Transfer, 163, p.120434.
- [9] Wu, W., Yang, X., Zhang, G., Chen, K. and Wang, S., 2017. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system. Energy Conversion and Management, 138, pp.486-492.
- [10] Hekmat, S. and Molaeimanesh, G.R., 2020. Hybrid thermal management of a Li-ion battery module with phase change material and cooling water pipes: An experimental investigation. Applied Thermal Engineering, 166, p.114759.
- [11] L. Dinesh, H. Sesham, and V. Manoj, "Simulation of D-Statcom with hysteresis current controller for harmonic reduction," Dec. 2012, doi: 10.1109/iceteeem.2012.6494513.
- [12] V. Manoj, A. Swathi, and V. T. Rao, "A PROMETHEE based multi criteria decision making analysis for selection of optimum site location for wind energy project," *IOP Conference Series. Materials Science and Engineering*, vol. 1033, no. 1, p. 012035, Jan. 2021, doi: 10.1088/1757-899x/1033/1/012035.
- [13] Manoj, Vasupalli, Goteti Bharadwaj, and N. R. P. Akhil Eswar. "Arduino based programmed railway track crack monitoring vehicle." *Int. J. Eng. Adv. Technol* 8, pp. 401-405, 2019.
- [14] Manoj, Vasupalli, and V. Lokesh Goteti Bharadwaj. "Programmed Railway Track Fault Tracer." *IJMPERD*, 2018.
- [15] Manoj, V., Krishna, K. S. M., & Kiran, M. S. "Photovoltaic system based grid interfacing inverter functioning as a conventional inverter and active power filter." *Jour of Adv Research in Dynamical & Control Systems*, Vol. 10, 05-Special Issue, 2018.
- [16] Manoj, V. (2016). Sensorless Control of Induction Motor Based on Model Reference Adaptive System (MRAS). International Journal For Research In Electronics & Electrical Engineering, 2(5), 01-06.
- [17] V. B. Venkateswaran and V. Manoj, "State estimation of power system containing FACTS Controller and PMU," 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO), 2015, pp. 1-6, doi: 10.1109/ISCO.2015.7282281
- [18] Manohar, K., Durga, B., Manoj, V., & Chaitanya, D. K. (2011). Design Of Fuzzy Logic Controller In DC Link To Reduce Switching Losses In VSC Using MATLAB-SIMULINK. Journal Of Research in Recent Trends.
- [19] Manoj, V., Manohar, K., & Prasad, B. D. (2012). Reduction of switching losses in VSC using DC link fuzzy logic controller Innovative Systems Design and Engineering ISSN, 2222-1727
- [20] Dinesh, L., Harish, S., & Manoj, V. (2015). Simulation of UPQC-IG with adaptive neuro fuzzy controller (ANFIS) for power quality improvement. Int J Electr Eng, 10, 249-268
- [21] V. Manoj, P. Rathnala, S. R. Sura, S. N. Sai, and M. V. Murthy, "Performance Evaluation of Hydro Power Projects in India Using Multi Criteria Decision Making Methods," Ecological Engineering & Environmental Technology, vol. 23, no. 5, pp. 205–217, Sep. 2022, doi: 10.12912/27197050/152130.

- [22] V. Manoj, V. Sravani, and A. Swathi, "A Multi Criteria Decision Making Approach for the Selection of Optimum Location for Wind Power Project in India," EAI Endorsed Transactions on Energy Web, p. 165996, Jul. 2018, doi: 10.4108/eai.1-7-2020.165996.
- [23] Kiran, V. R., Manoj, V., & Kumar, P. P. (2013). Genetic Algorithm approach to find excitation capacitances for 3-phase smseig operating single phase loads. Caribbean Journal of Sciences and Technology (CJST), 1(1), 105-115.
- [24] Manoj, V., Manohar, K., & Prasad, B. D. (2012). Reduction of Switching Losses in VSC Using DC Link Fuzzy Logic Controller. Innovative Systems Design and Engineering ISSN, 2222-1727.