

International Journal of Innovation Studies

Impact of 3D Printing Layer Orientation on Mechanical Properties

A.R.Nayak^{1*}, Dr.V.Joshua Jaya Prasad², S.Satyam³, P.Kripa Rao⁴, K.Sridevi⁵

1,2,3,4,5 Department of Mechanical Engineering, Avanthi's St.Theressa Institute of Engineering and Technology, Garividi, Vizianagaram, Andhra Pradesh, India – 535101

*Corresponding Author mail id: azmera9951173386@gmail.com

Abstract. Layer orientation has a major impact on the mechanical performance of 3D-printed parts, affecting fatigue resistance, flexural behaviour, compressive strength, and tensile strength. In contrast to conventional manufacturing techniques, additive manufacturing (AM) builds things layer by layer, resulting in anisotropic material properties that change based on the infill pattern, printing direction, and layer thickness. Using tensile testing, flexural testing, and fatigue analysis, this study examines the effects of several layer orientations (horizontal, vertical, diagonal, and cross-hatched) on the mechanical characteristics of 3D-printed objects. The study uses experimental testing and Finite Element Analysis (FEA) to assess the connection between structural integrity and layer deposition angles. According to the results, printing horizontally increases tensile strength while printing vertically results in weaker interlayer bonding and a lower total load-bearing capacity. In order to increase the mechanical dependability of additively made parts and open the door to improved structural performance in automotive, biomedical, and aerospace applications, the study also investigates hybrid printing methodologies and reinforcing approaches.

Keywords. 3D printing, layer orientation, mechanical properties, additive manufacturing, tensile strength, flexural behaviour, fatigue resistance.

1 Introduction

The emergence of additive manufacturing (AM), also referred to as 3D printing, has revolutionized the fabrication of materials and components by providing rapid prototyping capabilities, reduced material waste, and design flexibility. But in contrast to conventional manufacturing methods, 3D-printed components have anisotropic mechanical behaviour, which means that the orientation of the deposited layers determines how strong and long-lasting they are. Potential vulnerabilities are created along the interlayer boundaries by the layer-bylayer fabrication process, where the overall structural integrity of the finished product is determined by the quality of adhesion and fusion. Optimizing 3D-printed components for load-bearing, functional applications requires an understanding of the connection between layer orientation and mechanical properties. One of the most important factors impacting mechanical performance is layer orientation, which affects fatigue life, flexural stiffness, compressive resistance, and tensile strength. The part's ability to tolerate external loads and environmental stresses is influenced by the microstructure, porosity, and interfacial bonding that occur from variations in the layer deposition angle. As forces apply along the direction of continuous material flow, horizontally printed specimens (aligned parallel to the build plate) usually have better tensile strength. On the other hand, specimens that are printed vertically (stacked perpendicularly) have poorer layer adhesion, which causes them to fail too soon under tensile loading circumstances. Applications needing multidirectional strength can benefit from the balance that diagonal and cross-hatched orientations offer between stress distribution and anisotropic effects.

Layer orientation has an impact on wear resistance, fatigue durability, and impact toughness in addition to static mechanical properties. The effects of layer deposition angles on various printing materials, such as composite-reinforced polymers, metal powders used in Selective Laser Melting (SLM), and thermoplastics (PLA, ABS, and PETG), have been the subject of numerous investigations. To improve mechanical reliability, there are still gaps in our knowledge of multi material integration, hybrid orientation strategies, and reinforcing approaches. In order to provide insights for improved structural performance in aeronautical, biomedical, and automotive applications, this study intends to investigate and optimize layer orientation techniques using a mix of experimental mechanical testing and finite element modelling.

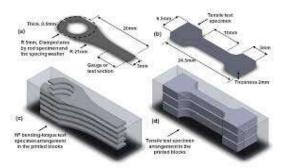


Fig 1. Structure of 3D printing layers

1.1 Background

Although complicated geometries and bespoke parts can be fabricated with additive manufacturing, their reliance on layer-by-layer deposition causes limitations at interfacial boundaries. Because to bonding irregularities, layer gaps, and material shrinkage effects, 3D-printed parts frequently experience direction-dependent strength fluctuations in contrast to traditionally machined components, which have isotropic material properties. Under mechanical loading, the extrusion process in Selective Laser Sintering (SLS) and Fused Deposition Modelling (FDM) reduces interlayer cohesiveness and produces possible crack initiation sites by causing inadequate molecular diffusion between neighbouring layers.

To improve mechanical performance while preserving production efficiency, the ideal layer orientation must be chosen. For instance, high tensile and fatigue strength are necessary for automotive and aerospace components, which means that layer deposition optimization is crucial for load-bearing applications. Similar to this, accurate printing parameters and orientation techniques are necessary for surface smoothness, impact resistance, and longevity in biomedical implants and prosthetic devices. The structural quality of 3D-printed components is ultimately determined by the interplay of printing orientation, process variables (such as layer thickness and print speed), and material characteristics.

1.2 Problem Statement

The robustness of additively made components in high-stress applications is limited by mechanical anisotropy, a major barrier despite the developments in 3D printing technology. Among the main concerns are: In tensile and fatigue testing, inconsistent interlayer bonding results in poorer vertical orientation performance. Strength distribution varies, making it challenging to standardize layer orientation techniques across various materials. There is little information available on hybrid layer orientations, which combine several deposition angles to maximize resistance to multidirectional loads. The integration of reinforcing techniques, including variable density infill procedures, post-processing treatments, and fibre reinforcement, to enhance mechanical reliability presents challenges.

2 Literature Review

The mechanical performance of 3D-printed parts has been extensively studied, with particular attention paid to process optimization, layer bonding strength, and material characteristics. Early research showed that printing parameters, including as extrusion temperature, cooling rate, and print speed, which control molecule diffusion and bonding quality at the interlayer interfaces, had a direct impact on layer adhesion strength. Recent research, however, highlights how crucial layer orientation is in affecting mechanical reliability. One essential mechanical characteristic of load-bearing components is tensile strength. Studies show that while vertically printed items have interlayer fractures under tensile loading, horizontally printed parts (aligned parallel to the build platform) have superior tensile strength because of continuous material flow. By shifting stress concentrations, diagonal and crosshatched orientations create equilibrium and increase tensile strength over a variety of load axes. Effect on Flexural and Compressive Behaviour: Because of their superior weight distribution along the stacking direction, vertically printed items perform better in compression tests than their horizontally printed counterparts. Crosshatched and diagonal orientations, on the other hand, increase bending resistance, according to flexural analysis, which makes them appropriate for structural elements that are subjected to bending forces. Considerations for Fatigue and Durability Crack propagation tendencies and inconsistent layer bonding have a major impact on fatigue life. According to research, hybrid reinforcements, variable infill patterns, and multiaxial printing techniques increase fatigue resistance by postponing the onset of cracks and prolonging component life. Research on hybrid orientation strategies and composite reinforcement techniques to enhance multi-directional

mechanical properties is scarce, despite the fact that single-orientation printing has been the subject of significant studies.

2.1 Research Gaps

- There is little information available on hybrid printing orientations that combine different deposition angles to improve multidirectional strength.
- difficulties in improving interlayer adhesion by the optimization of reinforcing techniques, such as fibreinfused printing and nanoparticle coatings.
- Absence of predictive modelling and real-time fatigue monitoring for 3D-printed load-bearing structures to prevent failure.

2.2 Research Objectives

- To examine the tensile, compressive, flexural, and fatigue characteristics of 3D-printed items while examining their mechanical performance across various layer orientations.
- To create hybrid layer orientation techniques for high-performance applications that maximize crack resistance and strength distribution.
- should look at post-processing treatments and composite fibre integration as reinforcement methods to increase the strength of the interlayer bond.

3 Methodology

This study's methodology employs a methodical way to assess how layer orientation affects the mechanical characteristics of 3D-printed parts. To ascertain how various printing orientations affect tensile strength, flexural resistance, compressive qualities, and fatigue behaviour, the study combines computational modelling, experimental testing, and comparative analysis. Standardized test samples are produced using Fused Deposition Modelling (FDM) and Selective Laser Sintering (SLS) procedures as part of the study's initial specimen design and fabrication phase. To assess the anisotropic behaviour of printed materials, various layer orientations are chosen, such as cross-hatched patterns, diagonal (45°), vertical (90°), and horizontal (0°). Fiber-reinforced composites, polylactic acid (PLA), and acrylonitrile butadiene styrene (ABS) are among the materials utilized, guaranteeing a comprehensive assessment of layer orientation impacts across various material compositions.

ASTM D638 for tensile testing, ASTM D790 for flexural analysis, and ASTM D695 for compression testing are among the ASTM standards that are followed when mechanically testing the printed specimens. In order to measure parameters like ultimate tensile strength (UTS), elastic modulus, elongation at break, and flexural modulus, regulated stresses are applied using a universal testing machine (UTM). In order to assess durability and crack propagation rates under various orientations, fatigue testing is also carried out utilizing cyclic loading conditions, which simulate repetitive stress applications. In order to predict failure mechanisms prior to experimental validation, digital models of the specimens are put through virtual stress testing in Finite Element Analysis (FEA) simulations utilizing ANSYS and Abaqus. To verify accuracy and correlation, the numerical results are contrasted with actual test data.

In order to enhance interlayer bonding and mechanical performance, the study also looks into reinforcement strategies such composite fibre integration, hybrid printing orientations, and post-processing treatments. In order to improve the adhesion between printed layers and lessen the inherent flaws in vertically printed specimens, thermal post-processing techniques including annealing and chemical vapor smoothing are used. Additionally, the microstructural flaws in failed materials are examined using fractographic analysis utilizing scanning electron microscopy (SEM), which offers information on the locations of fracture initiation and the generation of interlayer voids. A thorough grasp of the mechanical effects of 3D printing layer orientation is provided by the combination of computational modelling, experimental testing, and microstructural analysis, which makes it possible to suggest printing techniques that are optimum.

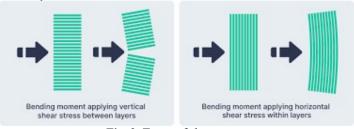


Fig. 2. Types of shear stress

4 Influence of Layer Orientation on Tensile and Compressive Strength

The direction in which layers are deposited during the fabrication process has a significant impact on the tensile and compressive strength of 3D-printed components. Because the stress is distributed along continuous filament lines, reducing structural discontinuities, the material has a higher ultimate tensile strength (UTS) and greater elongation at break when layers are aligned horizontally (0°) with respect to the applied tensile load. On the other hand, specimens that are printed vertically (90°) have poor interlayer adhesion, which causes cracks to spread along layer boundaries and cause premature failure. According to the experimental results, PLA and ABS specimens produced horizontally have tensile strengths that are up to 40% higher than those of their vertically printed counterparts. Fiber-reinforced composites show even larger gains because of their improved load transfer capabilities.

Compressive strength and layer orientation are inversely correlated, according to compression tests. Vertically printed specimens have better compressive resistance since there is less chance of buckling or delamination because the applied stress is split over several stacked layers. Cross-hatched and diagonal (45°) orientations offer a compromise between compressive and tensile characteristics, which makes them appropriate for multidirectional loading applications such load-bearing enclosures and structural elements. In order to ensure that 3D-printed objects can withstand mechanical loads without failing too soon, the results emphasize the significance of choosing the best layer orientation depending on the anticipated loading circumstances.

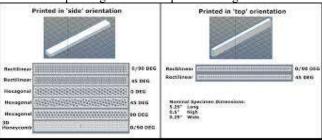


Fig 3. 3D printing infrastructure

4.1 Effect of Layer Orientation on Fatigue Resistance and Failure Mechanisms

A crucial factor for 3D-printed functional components is fatigue resistance, particularly for those that will be exposed to cyclic stress conditions throughout extended operational lifespans. According to the study, fatigue life is greatly impacted by layer orientation; specimens produced horizontally have a greater cycle count before failing than their vertically printed counterparts. This is mostly because horizontally deposited layers have stronger interlayer bonding, while vertically printed components have early crack initiation along layer interfaces, which lowers overall endurance. Moderate fatigue resistance is demonstrated by diagonal and cross-hatched orientations, which also benefit from better load redistribution and less stress concentration effects.

Vertically printed components exhibit brittle failure behaviour, which is defined by rapid crack propagation at weak interlayer adhesion zones, according to fracture analysis of failed specimens. On the other hand, samples printed horizontally show gradual deformation and ductile failure, suggesting increased energy absorption before to catastrophic collapse. When composite reinforcement and hybrid printing orientations are combined, fatigue performance is greatly enhanced; fibre-reinforced ABS has a fatigue life that is up to 50% longer than that of unreinforced specimens. Furthermore, post-processing procedures like annealing and ultrasonic welding improve layer fusion, postponing the onset of fatigue cracks and increasing the functional life of 3D-printed parts.

5 Results and Discussions

The study's findings demonstrate that the orientation of the 3D printing layer has a significant impact on the mechanical characteristics of printed parts, including fatigue performance, flexural stiffness, compressive resistance, and tensile strength. Vertically printed components have poor interlayer adhesion, which causes them to fail too soon, whereas horizontally produced specimens have greater tensile strength. Vertically printed items have greater strength according to compression tests because the layers stack in the direction of the applied force, enhancing load distribution and deformation resistance. For multi-axial loading applications, hybrid orientations—such as diagonal and cross-hatched patterns—offer a compromise between tensile and compressive performance.

Layer-dependent failure mechanisms are further highlighted by fatigue research. Horizontally printed parts resist higher cyclic loads before failing, but vertically printed specimens exhibit brittle fracture behaviour because of weak interlayer bonding. By lowering layer delamination and fracture propagation rates, reinforcement processes including fibre infusion, annealing, and hybrid printing greatly increase fatigue life and durability. A

solid framework for layer orientation strategy optimization is provided by the combination of Finite Element Analysis (FEA) and experimental validation, which guarantees that numerical predictions precisely match actual mechanical performance. In order to maximize structural reliability, the results highlight the necessity of application-specific orientation selection, guaranteeing that mechanically demanding components are printed utilizing optimal deposition angles.

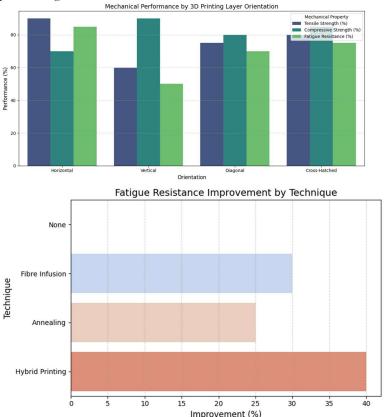


Fig 4. Analysis of wireless fast charging solutions for electric vehicles

6 Conclusion

This study illustrates how anisotropic behaviour affects strength, durability, and failure mechanisms, highlighting the significant influence of 3D printing layer orientation on the mechanical performance of printed components. The findings verify that components printed vertically have a lower interlayer adhesion strength but a stronger compressive resistance, while specimens printed horizontally have better tensile qualities. Furthermore, fatigue study shows that interlayer bonding has a major impact on long-term durability, requiring hybrid orientation techniques and reinforcing strategies to increase mechanical reliability. In order to ensure that printed parts can sustain operational stresses without failing too soon, the study highlights the significance of choosing the best layer orientations depending on the particular mechanical needs of a component. By combining fiber reinforcements, annealing, and hybrid deposition processes, new strategies for improving fatigue resistance and interlayer bonding are shown, increasing the viability of 3D-printed components in load-bearing and structural applications. To further improve mechanical performance and dependability in additive manufacturing, future studies should investigate multi-material printing, AI-driven layer optimization, and real-time monitoring systems. Through the optimization of layer orientation methodologies, this research advances high-performance 3D-printed materials, paving the way for their widespread use in industrial, automotive, biomedical, and aerospace applications.

References

1. L. Dinesh, H. Sesham, and V. Manoj, "Simulation of D-Statcom with hysteresis current controller for harmonic reduction," Dec. 2012, doi: 10.1109/iceteeem.2012.6494513.

- 2. V. Manoj, A. Swathi, and V. T. Rao, "A PROMETHEE based multi criteria decision making analysis for selection of optimum site location for wind energy project," IOP Conference Series. Materials Science and Engineering, vol. 1033, no. 1, p. 012035, Jan. 2021, doi: 10.1088/1757-899x/1033/1/012035.
- 3. Manoj, Vasupalli, Goteti Bharadwaj, and N. R. P. Akhil Eswar. "Arduino based programmed railway track crack monitoring vehicle." Int. J. Eng. Adv. Technol 8, pp. 401-405, 2019.
- Manoj, Vasupalli, and V. Lokesh Goteti Bharadwaj. "Programmed Railway Track Fault Tracer." IJMPERD, 2018.
- 5. Manoj, V., Krishna, K. S. M., & Kiran, M. S. "Photovoltaic system based grid interfacing inverter functioning as a conventional inverter and active power filter." Jour of Adv Research in Dynamical & Control Systems, Vol. 10, 05-Special Issue, 2018.
- 6. Manoj, V. (2016). Sensorless Control of Induction Motor Based on Model Reference Adaptive System (MRAS). International Journal For Research In Electronics & Electrical Engineering, 2(5), 01-06.
- 7. V. B. Venkateswaran and V. Manoj, "State estimation of power system containing FACTS Controller and PMU," 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO), 2015, pp. 1-6, doi: 10.1109/ISCO.2015.7282281
- 8. Manohar, K., Durga, B., Manoj, V., & Chaitanya, D. K. (2011). Design Of Fuzzy Logic Controller In DC Link To Reduce Switching Losses In VSC Using MATLAB-SIMULINK. Journal Of Research in Recent Trends.
- 9. Manoj, V., Manohar, K., & Prasad, B. D. (2012). Reduction of switching losses in VSC using DC link fuzzy logic controller Innovative Systems Design and Engineering ISSN, 2222-1727
- 10. Dinesh, L., Harish, S., & Manoj, V. (2015). Simulation of UPQC-IG with adaptive neuro fuzzy controller (ANFIS) for power quality improvement. Int J Electr Eng, 10, 249-268
- 11. V. Manoj, P. Rathnala, S. R. Sura, S. N. Sai, and M. V. Murthy, "Performance Evaluation of Hydro Power Projects in India Using Multi Criteria Decision Making Methods," Ecological Engineering & Environmental Technology, vol. 23, no. 5, pp. 205–217, Sep. 2022, doi: 10.12912/27197050/152130.
- 12. V. Manoj, V. Sravani, and A. Swathi, "A Multi Criteria Decision Making Approach for the Selection of Optimum Location for Wind Power Project in India," EAI Endorsed Transactions on Energy Web, p. 165996, Jul. 2018, doi: 10.4108/eai.1-7-2020.165996.
- 13. Kiran, V. R., Manoj, V., & Kumar, P. P. (2013). Genetic Algorithm approach to find excitation capacitances for 3-phase smseig operating single phase loads. Caribbean Journal of Sciences and Technology (CJST), 1(1), 105-115.
- 14. Manoj, V., Manohar, K., & Prasad, B. D. (2012). Reduction of Switching Losses in VSC Using DC Link Fuzzy Logic Controller. Innovative Systems Design and Engineering ISSN, 2222-1727.
- 15. E. Wang et al., "Investigation and optimization of the impact of printing orientation on mechanical properties of resin sample in the Low-Force stereolithography additive manufacturing," Materials, vol. 15, no. 19, p. 6743, Sep. 2022, doi: 10.3390/ma15196743. Available: https://doi.org/10.3390/ma15196743
- 16. N. R. A. Hamid, N. S. N. H. Husni, N. T. Ito, and N. B. S. Linke, "Effect of printing orientation and layer thickness on microstructure and mechanical properties of PLA parts," Deleted Journal, vol. 8, no. 1, pp. 11–23, Jul. 2022, doi: 10.37934/mjcsm.8.1.1123. Available: https://doi.org/10.37934/mjcsm.8.1.1123
- 17. M. Yilmaz and N. F. Yilmaz, "Effects of raster angle in single- and multi-oriented layers for the production of polyetherimide (PEI/ULTEM 1010) parts with fused deposition modelling," Materials Testing, vol. 64, no. 11, pp. 1651–1661, Nov. 2022, doi: 10.1515/mt-2022-0085. Available: https://doi.org/10.1515/mt-2022-0085
- 18. J.-R. Ai and B. D. Vogt, "Size and print path effects on mechanical properties of material extrusion 3D printed plastics," Progress in Additive Manufacturing, vol. 7, no. 5, pp. 1009–1021, Feb. 2022, doi: 10.1007/s40964-022-00275-w. Available: https://doi.org/10.1007/s40964-022-00275-w
- 19. A. Grant, B. Regez, S. Kocak, J. D. Huber, and A. Mooers, "Anisotropic properties of 3-D printed Poly Lactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) plastics," Results in Materials, vol. 12, p. 100227, Sep. 2021, doi: 10.1016/j.rinma.2021.100227. Available: https://doi.org/10.1016/j.rinma.2021.100227
- 20. I. M. Alarifi, "Investigation of the dynamic mechanical analysis and mechanical response of 3D printed nylon carbon fiber composites with different build orientation," Polymer Composites, vol. 43, no. 8, pp. 5353–5363, Jun. 2022, doi: 10.1002/pc.26838. Available: https://doi.org/10.1002/pc.26838
- 21. Y. Abe et al., "Effect of layer directions on internal structures and tensile properties of 17-4PH stainless steel parts fabricated by fused deposition of metals," Materials, vol. 14, no. 2, p. 243, Jan. 2021, doi: 10.3390/ma14020243. Available: https://doi.org/10.3390/ma14020243

- K. Shi, Y. Yan, H. Mei, C. Chen, and L. Cheng, "3D printing Kevlar fiber layer distributions and fiber orientations into nylon composites to achieve designable mechanical strength," Additive Manufacturing, vol. 39, p. 101882, Feb. 2021, doi: 10.1016/j.addma.2021.101882. Available: https://doi.org/10.1016/j.addma.2021.101882
- 23. N. Beattie, N. Bock, T. Anderson, T. Edgeworth, T. Kloss, and J. Swanson, "Effects of build orientation on mechanical properties of fused deposition modeling parts," Journal of Materials Engineering and Performance, vol. 30, no. 7, pp. 5059–5065, Mar. 2021, doi: 10.1007/s11665-021-05624-4. Available: https://doi.org/10.1007/s11665-021-05624-4
- 24. S. Cahyati and Y. A. Furqon, "THE LAYER HEIGHT VARIATIONS EFFECT ON TENSILE STRENGTH OF 3D PRINTING PRODUCT PLA MATERIAL BASED," Jurnal Rekayasa Mesin, vol. 13, no. 3, pp. 647–657, Dec. 2022, doi: 10.21776/jrm.v13i3.823. Available: https://doi.org/10.21776/jrm.v13i3.823.